X-Ray and Ultraviolet Luminescence of Li₃Ta_{1-x}Nb_xO₄ Prepared by Flux Synthesis and Characterization of a New High Efficiency X-Ray Phosphor

C. R. Miao and C. C. Torardi

DuPont Company, Central Research and Development, Experimental Station, Wilmington, Delaware 19880-0356

Received November 25, 1998; in revised form February 2, 1999; accepted February 15, 1999

The phase development and luminescence properties, under both X-ray and ultraviolet excitation, of the lithium orthotantalate–lithium orthoniobate system, $Li_3Ta_{1-x}Nb_xO_4$ for x = 0 to 1, were examined. Using a flux synthesis technique, it was found that the levels of Nb-doping in monoclinic Li₃TaO₄ and of Tadoping in cubic Li₃NbO₄ are higher than previously reported. Under 30 kVp molybdenum X-ray excitation, Li₃Ta_{1-x}Nb₄O₄ is an efficient blue-emitting phosphor with broadband emission, peaking in the range of 390 to 435 nm. For x = 0 to 0.1, the overall luminescence efficiency is comparable to, or better than, a commercial calcium tungstate, CaWO₄, Hi-Plus material. The composition Li₃Ta_{0.995}Nb_{0.005}O₄ demonstrates an overall luminescence efficiency that makes this phosphor 45% brighter than CaWO₄ Hi-Plus, thereby making it a potentially attractive candidate for use in medical diagnostic imaging systems. Under ultraviolet excitation, broadband blue emission is also observed. For all the Li₃Ta_{1-x}Nb_xO₄ (x > 0) solid solutions, the emission peak maximums agree well with those seen under X-ray excitation and are the result of Nb⁵⁺ emission. © 1999 Academic Press

INTRODUCTION

X-ray phosphors are solid-state inorganic materials used in medical X-ray imaging applications (1, 2). The role of these phosphors is to reduce the exposure of the patient to X-rays while preserving the structural features of the X-ray image. This is accomplished by converting every X-ray photon absorbed by a phosphor screen into hundreds of visible- or UV-light photons which are then recorded by a detector, such as a piece of photographic film. A good X-ray phosphor must meet challenging prerequisites (1–3): good X-ray absorption in the diagnostic medical energy range (15–100 keV), high luminescence efficiency, emission in the green to near-UV region, proper crystallite size and shape, air and water stability, and easy large-scale production. The goal of our X-ray phosphor research was to design materials that would lower X-ray exposure and improve image quality.

In this paper, we describe the flux synthesis, structural phase transitions, and luminescence of an efficient X-ray phosphor family $\text{Li}_3\text{Ta}_{1-x}\text{Nb}_xO_4$ (x = 0-1). Prior to this work, the two end-member compositions had been prepared using traditional solid-state methods (4, 5) and only a brief examination of their UV-excited luminescence properties had been performed (5). This paper focuses on the characterization of the luminescence properties of the entire range of compositions under both X-ray and UV-excitation. We report the optimum chemical composition region ($x \sim 0.001-0.01$) that results in blue, broadband X-ray excited luminescence, peaking at ~ 415 nm, with intensity greater than that of CaWO₄ Hi-Plus and comparable to that of M'-YTa_{0.98}Nb_{0.02}O₄, a very successful commercial phosphor (6).

EXPERIMENTAL

Synthesis

Stoichiometric quantities of Li_2CO_3 (J. T. Baker reagent grade, 99.6%), Ta_2O_5 (Stark standard optical grade, 99.96%), and Nb_2O_5 (Johnson–Matthey puratronic, 99.998%) were combined according to the equation

$$3 \operatorname{Li}_2 \operatorname{CO}_3 + (1 - x) \operatorname{Ta}_2 \operatorname{O}_5 + x \operatorname{Nb}_2 \operatorname{O}_5$$
$$\rightarrow 2 \operatorname{Li}_3 \operatorname{Ta}_{1 - x} \operatorname{Nb}_x \operatorname{O}_4 + 3 \operatorname{CO}_2$$

and mixed with Li_2SO_4 flux. The amount of Li_2SO_4 was equal to 35% of the combined weights of the other starting materials. Li_2CO_3 is required for the reaction because, in this temperature range, we find that Ta_2O_5 will react with Li_2SO_4 to form LiTaO₃, but not Li_3TaO_4 . Each sample was ground in an agate mortar, fired in a covered alumina crucible at 1000°C for 16 hours, and then furnace cooled. The Li_2SO_4 was washed out with water and the sample dried under infrared lamps. X-ray powder diffraction (Phillips APD3720 with Cu radiation) was used to verify phase

purity. Some preparations contained a very small amount of $LiTaO_3$. These levels of $LiTaO_3$ did not appear to affect the luminescence speed (i.e., efficiency).

Physical Characterization

Particle size analyses were conducted by dispersing the powders in a 70:30 glycerol:distilled water solution using a Sonicator W-375. The resultant dispersion was examined using a Horiba LA-500 laser diffraction particle size distribution analyzer. The particle size, crystallite size, and morphology were also examined using scanning electron microscopy techniques.

X-ray Luminescence Measurements

For measurements of X-ray stimulated luminescence properties, the powders were first mixed with a polymeric binder and coated on a sheet of base material. This technique for making a phosphor "screen" is similar to that used in commercial production (7), and permits the preparation of a screen with a uniform thickness of uniformly dense material. The base material and polymeric binder were chosen to avoid interference with the X-ray luminescence measurements.

The X-ray luminescence of the samples was examined under ambient conditions using a molybdenum X-ray source operating at 30 kVp and 10 mA. The sample was exposed to polychromatic X-radiation, and two detectors were used to measure the luminescence properties (2). The first detection system consisted of a Hamamatsu R928 photomultiplier and a picoammeter and was used to measure the total intensity of light coming from the sample or the overall X-ray-to-light conversion efficiency. The second detection system used a SPEX 500M spectrometer, in which the light from the sample passes through a 0.5-meter monochromator before entering a Hamamatsu R928 photomultiplier. Using this detection system, a characteristic spectrum of the luminescence of the sample could be obtained by scanning through the range of detectable wavelengths allowed by the monochromator and measuring the intensity of light at each interval. The Hamamatsu photomultipliers were selected because of their relatively flat response in the region 300-600 nm.

Ultraviolet Luminescence Measurements

Powder samples were packed into aluminum holders and examined under ultraviolet excitation at room temperature using a SPEX 1680 Fluorolog II double spectrometer which incorporated two 0.22-meter monochromators for monitoring of the excitation and emission spectra. The light from the UV lamp passes through a monochromator, monitored by a Hamamatsu R928 photomultiplier tube, to measure the wavelength and intensity of the energy used to excite the sample. A second monochromator and Hamamatsu R928 photomultiplier tube was used to monitor the light emitted by the sample in much the same way as described above for X-ray luminescence. By holding the excitation energy at a fixed wavelength, an emission spectrum of the sample was obtained. Conversely, an excitation spectrum could also be determined for a fixed emission wavelength.

RESULTS AND DISCUSSION

Structure

The structure of Li₃TaO₄ was initially described as pseudo-tetragonal, with a = 6.01 Å and c = 16.67 Å (8), but subsequent studies found that there are three different possible forms (9). However, it is the low-temperature pseudo-tetragonal phase, stable below about 900°C, that is discussed in this paper. It exists in a NaCl-type structure in which the cations and anions are octahedrally coordinated. Closer examination, by powder neutron diffraction (4), revealed that the Li⁺ and Ta⁵⁺ ions are ordered along the c-axis of a pseudo-tetragonal cell with a Ta-Li-Li-Ta repeat sequence, and the structure is best described as monoclinic (a = 8.50 Å, b = 8.50 Å, c = 9.34 Å and $\beta = 117.05^{\circ}$). The cation ordering creates chains of edge-sharing TaO₆ octahedra oriented parallel with the c-axis (Fig. 1). The oxygen octahedra of the TaO_6 units are distorted, and the cis-edge-shared oxygen-oxygen distances are significantly shorter than the remaining O-O contacts. The other forms of Li₃TaO₄ were not examined in this work.

Although the structure of Li_3NbO_4 contains NbO_6 and LiO_6 octahedra, it is very different from the tantalate and consists of isolated edge-sharing Nb_4O_{16} clusters interconnected by LiO_6 units (10).

Synthesis and Characterization

The synthesis of the low-temperature form of Li_3TaO_4 by conventional solid-state techniques, used by Zocchi *et al.* (4), involves reacting lithium metatantalate and lithium carbonate. Following their procedure, LiTaO₃ and Li₂CO₃ were ground together and heated for 20 hours at 700°C, reground and heated for 120 hours at 800°C, and then reground and heated for 17 hours at 1000°C to obtain phase pure material.

We have discussed the benefits of using flux techniques to synthesize phosphor materials (2, 11), in particular, the important X-ray phosphor M'-YTaO₄ (6, 11). By employing a Li₂SO₄ flux to facilitate the reaction between Li₂CO₃ and Ta₂O₅, it was found that the reaction time for the synthesis of Li₃TaO₄ could be reduced by a factor of ten. Particle size measurements showed that the flux synthesized powders contained considerably larger particles than those obtained from the solid-state method. The median particle size of the

FIG. 1. Monoclinic structure of Li₃TaO₄ emphasizing edge-sharing of TaO₆ octahedra. Li atoms are shaded. For clarity, Li–O bonds are not shown.

former, using a Li_2SO_4 flux, was 34 µm, while the latter yielded a median size of 7.5 µm.

Using scanning electron microscopy, it was found that the powders formed by solid-state synthesis were comprised of approximately 3 to 15 μ m agglomerates that consisted of 1 to 3 μ m crystallites fused together in porous networks. It is likely that this morphology arises from partial melting of the crystallites during the synthesis. It would be expected that this combination of small crystallite size and porous morphology would lead to a decrease in luminescence efficiency. The small crystallites, and consequently high surface area, would reduce the bulk emission, and the porous network of particles would reduce the packing density of the phosphor.

In comparison, the powders of Li_3TaO_4 obtained from flux synthesis displayed a more isotropic polyhedral shape which could provide more efficient packing in a phosphor screen. Although the larger size of the crystallites, which were approximately 10 to 70 µm, may present difficulties in coating thin screens, in previous studies of the related M'-YTaO₄ system this problem was overcome through the utilization of finer starting materials, post-reaction milling, or adjustments of the reaction time and temperature and amount of flux. These variations were not explored for Li_3TaO_4 in this work.

The crystallites of Li_3NbO_4 formed by flux synthesis were smaller than those prepared for Li_3TaO_4 and had a less uniform size distribution (0.5 to 20 µm).

The flux method was also utilized to explore the solubility of Nb in monoclinic Li_3TaO_4 . Previous studies of solidsolution formation in the $Li_3Ta_{1-x}Nb_xO_4$ system had employed solid-state preparative methods (12). This work showed that up to 20% Nb could be substituted for Ta in Li_3TaO_4 and that solubility of Ta in Li_3NbO_4 was very limited (about 7%). By examining compositions across the entire system, it was found that the flux method significantly increases the degree of solid solubility under the synthesis conditions described above. For example, an X-ray powder diffraction pattern collected from a sample of monoclinic $Li_3Ta_{1-x}Nb_xO_4$ with x = 0.6 could be indexed in terms of a single phase product. The use of a flux also extended the solubility of Ta in cubic Li_3NbO_4 up to approximately 20% Ta replacing Nb. Between these two limits, x = 0.6 to 0.8, a two-phase mixture of monoclinic Li_3TaO_4 and cubic Li_3NbO_4 was formed.

X-ray Luminescence

The X-ray excited luminescence of flux-derived samples of $Li_{3}TaO_{4}$ is shown in Fig. 2. The spectrum is similar to that of M'-YTaO₄ (6), with a broadband due to self-activated Ta⁵⁺ emission. The shift to a slightly longer wavelength $(395 \text{ nm vs } 330 \text{ nm for } M'-YTaO_4)$ is likely due in part to the presence of the lithium octahedra. Whereas in $M'-YTaO_4$ there is one yttrium ion in eight-fold coordination with oxygen for every TaO₆ unit, Li₃TaO₄ has three lithium octahedra for each TaO₆ unit. This leads to stronger vibronic coupling between the lattice and each luminescent center and consequently a slightly larger Stokes shift (the optical absorption edges for both compounds are approximately equal (13)). It is perhaps significant that Li_3TaO_4 has edge-sharing chains of TaO₆ octahedra (Fig. 1), a structural feature found in $YTaO_4$ -type phosphors (2). The effect of bringing together highly charged Ta⁵⁺ ions in parallel

FIG. 2. Broadband blue emission of $\text{Li}_3\text{Ta}_{1-x}\text{Nb}_x\text{O}_4$ for x = 0 (395 nm), x = 0.001 (410 nm), and x = 0.60 (435 nm) under X-ray excitation (Mo, 30 kVp). Intensities for the x = 0 and 0.60 spectra are scaled.

chains throughout the structure may be an important factor in the luminescence of these materials. Because their luminescence is best described as a self-activated chargetransfer mechanism, it is possible that a shorter distance between the luminescent Ta^{5+} cations facilitates energy transfer from the oxygen ligands and encourages significant electronic reorganization.

As with M'-YTaO₄, the substitution of very small levels of niobium results in a shift in the emission peak to the characteristic broad blue peak of niobium, at approximately 410 nm for x = 0.001 in Li₃Ta_{1-x}Nb_xO₄ (Figs. 2 and 3). In these materials, some of the tantalum emission is lost to niobium, since the large amount of spectral overlap between the two ions results in a high rate of energy transfer.

As the level of Nb-doping in Li_3TaO_4 is increased, the peak maximum of the emission gradually shifts to lower energy, up to approximately 435 nm for x = 0.6 (Figs. 2

FIG. 3. Change in X-ray and UV excited emission peak maximum with x in $\text{Li}_3\text{Ta}_{1-x}\text{Nb}_x\text{O}_4$.

FIG. 4. Luminescence efficiency (speed) of X-ray excited $Li_3Ta_{1-x}Nb_xO_4$. Speed values are relative to a CaWO₄ Hi-Plus standard. Relative speeds of M'-YTaO₄-type phosphors are also compared.

and 3). This increase in the Stokes shift is attributable to an increase in the vibronic coupling of the lattice. The fact that Li_3NbO_4 does not form a monoclinic phase similar to that of Li_3TaO_4 implies that the Nb⁵⁺ ion is not generally stable in the octahedral coordination of the Ta⁵⁺ ion found in Li_3TaO_4 . Therefore, substituting Nb into Li_3TaO_4 introduces a great deal of strain on the lattice, and strong vibronic coupling with the Nb⁵⁺ defect centers is required to maintain the structure.

Figure 4 shows the overall luminescence efficiency, or speed, of undoped Li₃TaO₄ and Nb-doped Li₃TaO₄ relative to a calcium tungstate Hi-Plus standard. The undoped material displays a speed comparable to that of CaWO₄ (various flux preparations of Li₃TaO₄ had speeds in the range of ~ 0.7 –1.0 relative to Hi-Plus). However, the maximum luminescence efficiency is observed at $x \sim 0.005$ (i.e., in the composition region x = 0.001 - 0.010), with a speed approximately 45% greater than that of Hi-Plus (7). This relative overall brightness is greater than that of commercial UV-emitting M'-YTaO₄ and approaches that of blue-emitting Nb-doped M'-YTaO₄ (1, 2, 6). However, Nb-doped Li₃TaO₄ is not an ultraviolet emitter and it has lower X-ray absorption than M'-YTaO₄ (it has approximately 75% of the density of $YTaO_4$, 5.75 vs 7.58 g/cm³). Nonetheless, a blue-emitting phosphor that is 45% brighter than CaWO₄ could be of interest to the X-ray phosphor industry (7).

As can be seen in Fig. 4, the luminescence efficiency of Nb-doped Li_3TaO_4 rapidly declines as increasing amounts of niobium are added. The rapid quenching of the overall luminescence of these samples may be attributable to the coupling of the Nb⁵⁺ luminescent centers at the higher substitutional levels.

The luminescence of the two-phase region of the system and of the Ta-doped Li_3NbO_4 region were also examined and were found to exhibit luminescence properties similar to Li_3NbO_4 (Figs. 3 and 4).

Ultraviolet Luminescence

Previous investigations of the ultraviolet-excited luminescence of Li_3TaO_4 and Li_3NbO_4 (5) indicated that the peak emission energy for the tantalate occurs at a much lower energy (460 nm) than that of the niobate (370 nm). In the experiments conducted here on the flux-grown samples, similar results were obtained, with a weak, broad peak observed at 490 nm for Li₃TaO₄ and a much stronger broad peak found at 400 nm for Li₃NbO₄. The possibility that the 490-nm luminescence was due to a very small amount of LiTaO₃ impurity was eliminated by examining a sample of pure LiTaO₃, which showed an even lower intensity emission. The very weak low energy emission of Li₃TaO₄ may be attributable to the spectral limitations of available equipment as discussed earlier (5). Typical ultraviolet excitation energies (approximately $\lambda = 250$ nm) are high enough to overcome the band gap in Li_3NbO_4 (~250 nm) but slightly less than that of Li_3TaO_4 (~225 nm). As a result, the UV luminescence from Li_3TaO_4 may be of a weak phosphorescence type with significant energy lost in removing trapped electrons from the band gap. For Li₃NbO₄, a fairly normal fluorescence would be expected.

As seen with the X-ray luminescence measurements, under UV-excitation the addition of Nb in Li_3TaO_4 results in a blue emission peak characteristic of Nb^{5+} . The weak phosphorescence at 490 nm for undoped Li_3TaO_4 becomes a 10-fold stronger 425 nm peak for as little as x = 0.001 in $\text{Li}_3\text{Ta}_{1-x}\text{Nb}_x\text{O}_4$. The Nb⁵⁺ ions in the TaO₆ octahedra apparently function as isolated luminescent centers, and the emission spectra remain unchanged throughout the monoclinic phase region (Figs. 3 and 5). A shoulder observed on the low energy side of the emission peak present throughout

FIG. 5. Characteristic emission spectrum of monoclinic $\text{Li}_3\text{Ta}_{1-x}\text{Nb}_x\text{O}_4$ for x values of 0.001 to 0.6, peaking in the blue region (425 nm) under 250 nm UV-excitation. (Feature at 450 nm is due to a monochromator grating change.)

the compositional series is an artifact of the measurement method and arises from a difference in monochromator sensitivity due to a change in gratings. Under UV-excitation, the emission peak maximum lies at approximately the same wavelength as that under X-ray excitation. However, the gradual shift of the peak to lower energy with additional niobium, observed under X-ray excitation, is not observed with UV excitation, indicating that, even at low Nb-doping levels, only the niobium centers can be excited. Also, the rapid decrease in efficiency for x > 0.01 under X-ray excitation (Fig. 4) is not seen in our UV study. In fact, qualitative measurements show the UV-excited efficiency rapidly increasing from x = 0.001 to 0.10, and maximum efficiency over a wide range, $x \sim 0.2$ -0.3, in the monoclinic Li₃TaO₄ structure-type region.

Finally, the spectrum of the two-phase mixture, at x = 0.7in Li₃Ta_{1-x}Nb_xO₄, as well as the spectra of the samples having the cubic Li₃NbO₄ structure, exhibit the characteristic 400-nm niobate emission of Li₃NbO₄. This is similar to the results for X-ray excited luminescence and is the result of the Ta⁵⁺ ions losing all of their excited state energy to the lower energy Nb⁵⁺ ions.

CONCLUSIONS

Lithium orthotantalate, Li_3TaO_4 , can be easily synthesized using flux chemistry methods. Using a Li_2SO_4 flux, the reaction time required to produce phase pure material is greatly reduced compared to a conventional solid-state synthesis procedure. It was found that the use of flux methods also significantly increased the solubility of Nb in Li_3TaO_4 , allowing 60% Nb to substitute into the monoclinic Li_3TaO_4 structure for Ta. The flux methods also extended the solubility of Ta in cubic Li_3NbO_4 to 20%.

Li₃TaO₄ is an efficient broadband blue-emitting (395 nm) X-ray phosphor with an overall luminescence comparable to CaWO₄. Low-level substitution of Nb for Ta improves the luminescence of Li₃TaO₄, with peak efficiency at compositions close to Li₃Ta_{0.995}Nb_{0.005}O₄. In the composition region of $x \sim 0.001-0.01$, the emission peak is centered at \sim 415 nm, and the overall luminescence efficiency is 45% brighter than a commercial CaWO₄ Hi-Plus material. This shifting of the emission peak to lower energy, with the addition of Nb to Li₃TaO₄, is the result of an efficient transfer of the excited-state energy of Ta⁵⁺ ions to Nb⁵⁺ ions. As the level of Nb substitution is increased in $Li_3Ta_{1-x}Nb_xO_4$, from x = 0.001 to x = 0.6, a gradual shifting of the emission peak maximum, to 435 nm for x = 0.6, is observed due to increased vibronic coupling with the lattice. Despite its lower density compared to CaWO₄, the large improvement in X-ray luminescence efficiency of $Li_3Ta_{1-x}Nb_xO_4$ (with $x \sim 0.001-0.01$) makes it an attractive candidate for applications requiring a blue-emitting phosphor.

Under ultraviolet excitation, broadband blue emission was also observed. For all $\text{Li}_3\text{Ta}_{1-x}\text{Nb}_x\text{O}_4$ (x > 0) solid solutions, the emission peak maximums agree well with those under X-ray excitation, centered at 425 nm for the compositions having the monoclinic Li_3TaO_4 structure and 400 nm for those with the cubic Li_3NbO_4 structure. The observed spectra are the result of Nb⁵⁺ emission. For undoped Li_3TaO_4 , experimental limitations inhibit a clear understanding of the ultraviolet excited luminescence.

ACKNOWLEDGMENT

We thank P. K. Davies for discussion and comments on the present work, L. H. Brixner, S. L. Issler, and W. Zegarski for general discussions on phosphor materials, C. M. Foris for X-ray powder diffraction data, and M. K. Crawford and B. D. Jones for assistance with the X-ray and UV excitation spectrometers.

REFERENCES

- 1. L. H. Brixner, Mater. Chem. Phys. 16, 253 (1987).
- 2. S. L. Issler and C. C. Torardi, J. Alloys Comp. 229, 54 (1995).
- 3. R. C. Ropp, "Luminescence and the Solid State," Elsevier Science, Amsterdam, 1991.
- M. Zocchi, M. Gatti, A. Santoro, and R. S. Roth, J. Solid State Chem. 48, 420 (1983).
- 5. G. Blasse and A. Bril, Z. Physik. Chem. Neue Folge 57, 187 (1968).
- 6. L. H. Brixner and H.-Y. Chen, J. Electrochem. Soc. 130, 2435 (1983).
- 7. C. C. Torardi, U. S. Patent 5,430,302 (1995).
- 8. G. Blasse, Z. Anorg. Allg. Chem. 331, 44 (1964).
- 9. L. C. Martel and R. S. Roth, Bull. Amer. Ceram. Soc. 60, 376 (1981).
- K. Ukei, H. Suzuki, T. Shishido, and T. Fukuda, Acta Crystallogr. C 50, 655 (1994).
- D. B. Hedden, C. C. Torardi, and W. Zegarski, J. Solid State Chem. 118, 419 (1995).
- 12. G. Blasse, J. Inorg. Nucl. Chem. 27, 2117 (1965).
- 13. G. Blasse, J. Solid State Chem. 72, 72 (1988).